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J.  Phys. A: Math. Gen. 20 (1987) 2629-2643. Printed in the UK 

Quasi-Kramers symmetries under particle-hole conjugation 

G E Stedman 
Department of Physics, University of Canterbury, Christchurch 1, New Zealand 

Received 23 May 1986 

Abstract. The application of quasispin in nuclear, atomic and ligand field theory is extended 
here to systems of electron and hole states in a metallic system. Conversely, results known 
in connection with particle-hole conjugation in metals are generalised to shell theoretic 
applications of quasispin. The analogy between the relationship of particle-hole conjuga- 
tion with quasispin and the relationship of time reversal with ordinary spin is extended to 
the development of selection rules parallelling those associated through Kramers with time 
reversal. Hamiltonians such as the BCS Hamiltonian which are composed of quasispin 
operators with real or imaginary coefficients have definite conjugation signature and so 
have a special interest. Several old and new results for matrix elements within a half-filled 
shell are derived from this viewpoint. 

1. Introduction 

Particle-hole ( PH) conjugation symmetries have been discussed in many diverse fields 
of physics. Usually they have been applied in nuclear or  atomic shell theory, including 
ligand field theory, and  have been of particular importance in the theory of the 
interactions of systems with half-filled shells, which are eigenfunctions of the PH 

conjugation operator. Beyond that, the symmetry (and indeed antisymmetry) of rel- 
evant terms in the Hamiltonians of interest has given useful links between systems 
with partial o r  complete mirror symmetry; for example, the nuclear spectra of '8C1 
and of 40K may be deduced from each other (Parikh 1978). In other less obvious 
contexts, PH conjugation symmetries have been applied in, for example, the theory of 
alternation symmetry in certain organic molecules (Koutecky et a1 1985) and in PH 

exchange relative to the Fermi level in a conductor, and so to symmetries in the 
calculation of the Kondo effect o r  of transport properties of a metal (Keiter er a1 1969, 
Krempasky and  Schmid 1979). 

The links between all these diverse applications have not been adequately discussed. 
In  particular, Keiter et a1 (1969) give an explicit representation for a PH conjugation 
operator in terms of second quantised operators, which seems to be unknown in the 
nuclear and atomic contexts. Furthermore, this explicit form is closely related to the 
concept of quasispin, which is well known in the atomic, nuclear and even organic 
molecule contexts, but conversely is unknown in the theory of metallic transport. ( A  
formal discussion of quasi-spin groups is given by Cheng-tian Feng and Judd (1982), 
a review of applications in Rudzikas and Kaniausakas (1984) and further reviews and 
applications in Judd (1985) and Judd et al (1986).) I t  seems not to have been fully 
realised in any of these fields just  how close is the analogy between particle-hole 
conjugation as i t  relates to quasi-spin on the one hand, and time reversal as it relates 
to ordinary angular momentum on the other. Some of the key relations are given by 
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Judd (1967). Since these and  other relationships are (for time reversal) vital in proving 
some important selection rules, originally associated with the name of Kramers (Wigner 
1959, Abragam and Bleaney 1970), and illustrated in § 4, we anticipate selection rules 
of analogous form for various quantities of physical interest and arising from the 
algebra of quasispin and  the associated PH conjugation. We extend Judd’s comparison 
to bring out the analogy as fully as possible. For this we need to modify the PH 

conjugation operation of Keiter er a1 (1969) by a complex conjugation operation so 
as to make it antilinear. Only then, for example, d o  PH conjugation and quasi-spin 
anticommute. It transpires that, because of this modification, a physically non-trivial 
constraint is required of any Hamiltonian with PH conjugation symmetry (or antisym- 
metry). Consequently the full analogy with time reversal and spin is reserved to certain 
physical systems, which fortunately include many of model or  practical interest. These 
conclusions are developed below. In a later paper we examine the consequences for 
the calculation of thermopower in metallic glasses in more detail. 

2. Quasispin 

We summarise the standard definitions of quasispin in a somewhat novel and com- 
pressed notation, which simplifies the phase choices of previous accounts and brings 
out many basic symmetries more clearly; some results are new. 

Eigenstates I K )  of a n  unperturbed Hamiltonian Ho are labelled by an  irrep com- 
ponent label K of the symmetry group Go of Ho, corresponding to the spatial and  
spin degrees of freedom. We take states to be paired so that for every one-fermion 
state K there is a conjugate state l? in which the spin projections are reversed 
(incidentally this guarantees that the states d o  not coincide) and  in which also some 
similar transformation of the spatial parts of the eigenstates is performed. The latter 
transformation will correspond to a reversal of orbital angular momentum for the 
atomic and  nuclear applications, to a reversal of momentum for superconductivity, 
and  to a particle-hole exchange (between states on opposite sides of, and equidistant 
from, the Fermi surface) for thermopower applications. In most of these cases, the 
conjugate labels will have conjugate group theoretic character, and  the unitary 
matrices-analogous to a contravariant metric tensor-which couple conjugate states 
into a group invariant correspond to the 2jm symbols of the relevant symmetry group. 
These matrices are denoted here by their component (row and  column) labels ( K L ) ;  
since L is necessarily conjugate to K ,  and so uniquely defined in terms of K ,  we shall 
also write ( K L ) = ( K K ) G K i .  The phase ( K K )  is unavoidable in this definition for 
fermion states, since the matrix is antisymmetric; hence by unitarity the 2j phase 
{ K }  = ( K L ) ( L K ) *  is -1. For example, if we ignore orbital labels, K reduces to the 
spin projection m ( m  = *f), the spin transformation reduces to the 2jm symbols of 
S U ( 2 )  for spin s = f :  

(KK)+(mA)= ( - I ) ’ - ~ G , , , - ~  (1) 

i.e. ( + f ,  - f )  = $1, ( - f ,  +f) = -1, and so {s}= ( + f ,  - f ) (  - f ,  + f )  = -1. The operator 
aK is an  irreducible tensor operator while the annihilation operator becomes an 
irreducible tensor operator iiK only when rephased by the definition iiK = (KL)a, .  
These operators have the anticommutation relations 

{a : ,  i iL} = ( L K ) .  ( 2 )  
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We define a combined operator AK = ( a : ,  a', ), and for reasons that will become clear 
shortly regard this as a covariant SU(2) spinor ( Q  = i), the appropriate space, 'quasispin 
space', being unrelated to spin or orbital space. This spinor has as its component 
AKq = a i ( i i K )  for q = i (-i, respectively) where q is the quasispin projection. The 
corresponding contravariant components are obtained using the quasispin 2jm symbols 
(equation (1)) as a metric: A$ = (qq')A,,, and so may be seen to give the Hermitian 
conjugate operators: A$ = (KL)A:, ;  A i q  = ( L K  )AT. These operators have the anti- 
commutation relations: 

{AKq, ALq')  = ( L K ) ( q q ' )  
( 3 )  

the mixed metric tensor being the Kronecker delta symbol. Note the decoupling 
between quasispin and ordinary spin-space labels in these relations. 

Quasispin generators are obtained from coupling (denoted by boldface brackets) 
these spinors to an invariant in space-spin labels (denoted by the leading superscript 
zero) and to unit quasispin ( Q  = 1): 

0: E (~ /&) [AK&]"  

= ( i /  d2 ) ( K L  ) AKqALq.( 1 cy Ijqiq '). (4) 

The factor i ensures that these operators are Hermitian (to be precise, ( Q : ) +  = (aP)Q: ; 
for spin 1, a suitable Cartesian basis can be chosen, as mentioned below, to give 
( a @ )  = cSap) .  These close under commutation on the SU(2) Lie algebra: 

[ Q L  OF1 = iEapvQ; ( 5 )  

hence the name quasispin. A diagram proof is given in figure 1. The explicit form of 

Figure 1. Definitions of fundamental spinor A,, and of quasispin 0," and proof of the 
SU(2)  Lie algebra of quasispin operators using diagrams. 
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the quasispin operators is 

in spherical coordinates (i.e. the basis of the Rotenberg et a1 (1959) tables; we note 
that the superscript K on quasispin uniquely identifies one spin orbital K and so its 
conjugate i?, coupled to it  by the 2jm symbol ( K L )  = ( K K )  on the right-hand side). 
Using the contrastandard Fano-Racah transformation (see Stedman 1985, appendix 
B) we obtain in Cartesian coordinates 

where nK = a ; a K .  The quasispin magnitude Q" =maxlQ-fl is equal to $ for states 
with nK = n~ (both particle and hole states filled, or both empty) and is equal to zero 
for states with nK not equal to n g  (just one of the particle and hole states filled). Q+" 
ladders between states with nK = n~ = 1,O. We can check (figure 2) that the commuta- 
tion relations of Q" and of A" correspond to those of a spin-1 and spin-; tensor: 

[Qf, AKql = qAKq. (8) 
The above definitions of quasispin relate to just one pair of states. 

pairs m, = -1 to I: Q = Xk Q". Then 

where A = Z k  ( n K  + R E ) .  Hence Q is integral/half-integral as N is odd/even, and 
for a half-filled shell ( N  = ( G )  = 21 + 1) the eigenvalue M ,  of QZ is zero. 

We may construct coupled tensors of other types than the above. It is useful later 
to note the result [ A K A L ] ~  = 6 K E (  n - n~ - 1)/d2, so that for example the coupled 
(anti)commutators have the value 

Quasispin for a shell, (nl)" say, may be defined in terms of a summation over all 

(9) Q; = +[ (21 + 1) - A] 

[ [ A " ,  A K ] ] ~ ~ '  [ A K A K ] ~ ~ - [ A R A K ] ~ ~  

= d 2 (  nK - n K )  (10) 
[{A", A K } ] " =  -42 

while 

AKll",'o [ {A",  A R } ] ; '  = -(2J2i)Q,K. (11) 

Figure 2. Commutator of quasispin and fundamental spinor. 



Quasi-Kramers symmetries under PH conjugation 2633 

The first result of equation (1 1) follows from equation (3) via the diagram reduction 
theorem JLV1. Judd (1967) gives an equation related to equation (1 1) in the form 

[ A  AIk"" = [ I  - ( - l ) k + " + K ] [ a + ~ ] k "  -(-1)K8k06K0 

the superscripts k, K ,  K denoting orbital, spin and quasispin ranks. 
The anticommutation relations 

CO,", Q:}=2S,(Qr)'=S,(l-n, - n n + 2 n ~ n ~ )  (12) 

have a remarkably simple diagonal property, whose general proof (in the form 
{QE, Q,"} is proportional to ( a p ) )  is not obvious from equation (3). 

An elegant and equivalent statement is the following result. 

Theorem. The coupled tensor [Q" Q"]" vanishes. ( In  Judd's (1967) notation, 
( X"oo'X"oo')200 vanishes.) 

We comment first that [Q" QKloo gives the Casimir operator (Q")',  while 
[Q" Q"]" gives Q" by virtue of the Lie algebra of SU(2) (Q" x Q" = Q K )  and that 
the above theorem exhausts the possibility of further couplings. 

Second, since a symmetriser on vector labels does not couple to spin 1, and since 
the coupling to spin 0 is diagonal, this theorem implies the above diagonality of the 
anticommutator. 

Third, this theorem does not hold for isospin ( I +  = a i  a E ,  IT = ;( nK - n E ) ,  etc) and 
so is not simply a consequence of fermion bases of the spin operators. It is special to 
quasispin. 

While not an elegant demonstration (such has eluded us), the following proof gives 
at least some insight. 

ProoJ: First, the terms arising from anticommutators of the AKy in the expression 
[Q" QKIo2 must vanish, since only two operators remain, and coupling two quasispin-; 
labels to quasispin 2 is forbidden by the triangle rule of the quantum theory of angular 
momentum, e.g. via the diagram pinching 
true also for isospin, however. 

theorem JLV3 (figure 3 ( a ) ) .  This much is 

( b l  ( c )  

Figure 3. ( a ,  Definition of a coupled tensor of rank 2 (derived from quasispin) and the 
proof of the vanishing of the anticommutator terms in  this using the triangle rule. ( b ) ,  ( c )  
Two coupling trees which contribute oppositely to the component-zero part of the rank-? 
coupled tensor. 
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Second, when M is non-zero (say when M is positive), [ Q K  Q " ] ;  inevitably 
involves two operators with the same labels, including the same quasispin component 
(say two A,, or two AL+),  which annihilate each other when brought together through 
anticommutation. 

When M = 0, terms which do not disappear for the above reason come in pairs of 
products ofoperators which have the form A,+AR+ A,-AR-,  A,+AR- A,-A,+ from 
the coupling trees of figure 3(b) and (c) ,  respectively. While the Clebsch-Gordan 
coefficients in figures 3(b) and (c)  are different, their products are equal and the final 
result is proportional to the sum of the above operator products. However this sum 
cancels, since the two expressions are related by an odd number of permutations of 
the AKq and each permutation attracts a sign from the anticommutation procedure. 

Comments. ( a )  This does not forbid, say, creation of ' S  o f f "  from ' S  off '  by the 
application of quasispin operator products. The seniority U = 0 may be the same, in 
which case zero-rank operators could satisfy the quasispin selection rules (however, 
Q' would not contain four creation operators); even when U = 4 say, and a rank-two 
operator is vital, one may mix quasispin operators for different orbitals, since [ Q K  QLIo2 
is non-zero for K # L; alternatively (see equation (48) of Judd (1967) or equation 
(8.44) of Rudzikas and Kaniauskas (1984)) one may form operators with definite 
quasispin rank, but non-scalar in spin-space labels first (the 2jm symbol ( K L )  in 
equations (6) and (7) could be replaced by a 3jm or Clebsch-Gordan, coupling K 
and L to other than an invariant). We note that there will in turn be related, more 
complicated, restrictions on these operators and this will affect their matrix elements 
by the reasoning of § §  4-5. 

(b)  Since the operator on the right-hand side of equation (12) commutes with 
quasispin, the theorem is equivalent by Schur's lemma (as well as by elimination of 
Q = 1,2 ranks) to the quasispin-scalar character of the anticommutator: 

[{QL QT>, QkKI =o .  
This relation succinctly distinguishes quasispin from isospin. 

3. Particle-hole conjugation 

We define the particle-hole ( P H )  conjugation operator as 

and Z is the complex conjugation operator. This definition of a PH conjugation 
operator (apart from the factor 2)  is given explicitly by Keiter er a1 (1969), although 
the link with quasispin is novel. It is straightforward to prove from equations (8) and 
(lo)-(  12) that 

( a )  C is unitary. This follows since F', - G', = 1, [F,, G,] = 0,  these relations 
themselves following from [Os, Q,.] being proportional to {Qz, Q.x}, from F i  = F,, 
G$ = -4Qt and from equation (9). Since C is also antilinear, we use the term 
antiunitary (as for time reversal; Abragam and Bleaney (1970)). 
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( b )  C has the effect of producing an  empty/filled state K if the PH conjugate state 
K is filled/empty (in the wavefunction on which C acts) respectively. One may define 
C (Bell 1959, Lawson and  MacFarlane 1965) from the equations 

C 10) = n ( -a  L a t  ) 10) C u i  = i K C  Ca', = - a i C .  (15 )  

The last sign is unavoidable. The third equation follows from the second, using the 
antiunitarity of C, and noting that the transformations between aK and a i  generate 
the 2j phase {s} = - 1 .  These last two equations may be summarised in the form 

CAK, = A i  C. (16) 

( c )  C anticommutes with quasispin: 

{C, Q l =  0. (17 )  

This is a direct consequence of the antilinearity of C coupled with equation (9) 
( i = y , j = x , z ) ,  (1-4(Qf<)2)QK =O, [Q,", Q,"]=O. (A simple proof of the second of 
these relations is to note that Q K  = +  or  0, and  that from equation (10) Q: =fQ'.)  
These relations imply that ClQM,), where M ,  is the eigenvalue of QZ, is proportional 
to IQ - M,), since C and Qz anticommute, and that the phase factor in this proportional- 
ity must include (-l)'~, since C and Q+ anticommute. We shall build on this shortly 
to give a more precise statement of the relation (equation (19)). 

( d )  C and ordinary spin commute: [ C, SI = 0, as mentioned above. Similarly, C 
commutes with spatial symmetry operations. C is made from quasispin operators, 
themselves of scalar character-witness the similar transformation properties of the 
two operators on each side of C in equation (13) .  

( e )  The states IQM,) have eigenvalue *l  with respect to C 2 :  

C' = nK [ I  - 4( 0:)' - 2 i ~ ( <  1' 
= J 3 K [  1 - 8( QK)2/3]  = ( - I ) 2 Q .  (18) 

Again, this is in exact analogy to the situation for time reversal and real spin, where 
Kramers states-states pertaining to an  odd number of electrons-have negative 
eigenvalue under double time reversal, while a state with an  even number of electrons, 
o r  non-Kramers state, has positive eigenvalue. Here, however, a state with eigenvalue 
C2 = 1 ( a  'quasi-non-Kramers' state) is one which within a shell has, curiously, an odd 
number of electrons (giving equation (9) integral eigenvalues); more generally, such 
a state is one with an  even number of pair states K ,  R, both filled or  both empty, along 
with any number of half-occupied pair states. A state with an euen number of electrons 
in a shell, o r  a state with an odd number of such pair occupancies, has C 2  = - 1  
('quasi-Kramers'). This curious inversion between evenness and oddness for time 
reversal and PH conjugation is apparent throughout the later development. 

Since the number of particles must be conserved, a physical operator may only 
connect states of the same C2 parity at least within shell theory. Together, ( a ) - ( e )  
show that PH conjugation stands in relation to quasispin precisely as time reversal 
stands in relation to spin (Judd 1967). In  particular, equation (18) requires the Q 
dependence of the phase in the relation (otherwise ensured by ( c )  and by freedom of 
phase choice of the kets) 

(19) 
In  particular, for a half-filled shell ( M ,  = 0) all states are self-conjugate, with eigen- 
values *1 under C as Q is even/odd. 

Cl QM,) = ( - l ) Q - M u /  Q - MQ).  
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We note that since (C),=, = 1, C commutes with Q = 0 terms such as ( a i & L  - i K a : ) ,  
or equations (8) and (12). 

4. Physical consequences of time reversal symmetry 

4.1. Review of standard applications 

If CP violation is ignored, all Hamiltonians are invariant with respect to time reversal. 
When such Hamiltonians are divided into operators acting on one or other of two 
subsystems, such as a radiation field and  the matter on which it acts, each operator 
in an  interaction has its own time reversal signature; the signs must cancel on forming 
the product. We review the significance of this in a condensed matter context. More 
details may be found in Abragam and Bleaney (1970), Payne and Stedman (1983) and 
Stedman (1985), for example. 

For example, the Zeeman interaction involves two time-odd quantities; in this case 
it is important that time reversal and angular momentum anticommute, i.e. that spin 
is time-odd. Similarly, the radiation-matter interaction A * p  has time-odd operators 
coupled into a time-even (and  rotationally invariant) product. However the interaction 
E .  r with a static electric field involves time-even operators only. These results lead 
directly to novel selection rules, based on application of the identity for antiunitary 
operators T :  

(20) 

(the bars denoting the transformed quantities) (Messiah 1960). Since not all of these 
are well known we mention some examples. The eigenvalue of any state la)  with 
respect to double time reversal will be written as { a }  and is +1 for a non-Kramers 
state (even number of electrons) and -1 for a Kramers state (odd number of electrons). 
{ a }  is determined by the product of 2 j  phases {s} for the constituent electrons, and 
corresponds to { K }  or the 2 j  phase in the full parentage labelling from SO(3). Results 
special to Kramers (non-Kramers) systems will be labelled K ( N K ,  respectively). 

From equation (20), a time-even (odd)  coupling E ( 0 )  in a subsystem gives the 
constraints 

(a lHlb)  = [ ( (a lT- ’ ) (  THT-’ ) (  Tlb))]* = (61al6)* 

Hence la )  and 16) are degenerate under a time-even interaction and are distinct in the 
Kramers case (for otherwise { a }  = 1). Only a time-odd interaction can separate time 
conjugate states. However, it may not couple such states. For example, single-photon 
interactions may not couple time-conjugate states la) ,  16) even in a non-Kramers system, 
irrespective of the multipole of coupling. Similar results hold at higher order of 
perturbation. Such second-order contributions as 

= 1,. [( I H/  I c)( I I n ) /  { E a  - + 1 + (6 1 1 cl H /  I a )/ { - - 11 ( 2 2 )  
( k ,  I referring to boson-photon or phonon-modes coupled by the interaction and 
a, c to electronic states) suffer cancellation of the numerators (dubbed the ‘van Vleck 
cancellation’ in the literature) in Kramers systems. Hence, for example, Raman 
spin-lattice relaxation in a Kramers system has a T’, rather than T’, dependence on 
temperature. In two-particle matrix elements (as for virtual phonon exchange between 
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Kramers ions (McKenzie and  Stedman 1979)) the analogous cancellations take on a 
complex but elegant structure, and again are directly responsible for physically distin- 
guishable properties such as temperature dependence. 

Let la)  and Ib) belong to some manifold of states which are degenerate under a 
spatial symmetry group of the unperturbed Hamiltonian. The manifold will be labelled 
by some irreducible representation A, say, of the spatial symmetry group. The Hamil- 
tonian is assumed to be time-even. All matrix elements within that manifold of states 
{ (a lHlb ) }  may be written as linear combinations of the set { M o b  = (GlHIb)},  since Id )  
is in this manifold, and (whether or not it is distinct from la), i.e. for either Kramers 
or non-Kramers systems) (16)) as well as the set { l a ) }  is a basis for the manifold. 
However, the above constraint gives that Mob = { a }  Mho for a time-even coupling, and 
Mob = - { a } k f b ,  for a time-odd coupling. Hence the allowed spatial coupling sym- 
metries are restricted to those irreducible representations appearing in the symmetrised 
and  antisymmetrised Kronecker product [ A  x A]*c,r  respectively. 

In the case of non-resonant Raman (photon) scattering, Raman active (phonon) 
modes couple via singlet electronic states only to even coupling symmetries ( J  = 0 , 2 )  
of the two photons. More generally the symmetric and antisymmetric Raman couplings 
(the latter arising from coupling to electronic multiplets) may not interfere. 

For the same basic physical reason (time-even phonon coupling) Jahn-Teller active 
phonons are those contained in an  appropriately symmetrised part of the Kronecker 
square of the electronic state symmetry. The physical origin of some important sum 
rules for reduction factors in Jahn-Teller systems may be traced to this. 

4.2. Relevance of time reversal to P H  conjugation 

Since the basic equations leading to all these important results all have analogues for 
PH conjugation and quasispin, we expect a similar set of results to be obtained in 
quasispin applications. The only requirement not already established is that the 
interaction operators involved should have a definite PH conjugation signature (i.e. 
C H  = *NC). We describe such an operator N as C-even or C-odd (and  label them 
8, 0) respectively. Given such operators, we have 

where the tilde (not to be confused with the rephasing of an  annihilation operator) is 
used instead of a bar, a script letter in place of Roman characters and Q (quasi-) 
added to subscripts (Kramers, non-Kramers) to emphasise the analogy but not the 
equivalence with equation (21). 

In systems where particle and hole labels are related by time reversal symmetry, 
the PH conjugacy signature necessary for use of equation (23) is guaranteed and the 
PH signature of an  interaction is closely linked to its time reversal signature. This 
comes about since charge conjugation essentially time-inverts the state labels. Detailed 
proofs of this statement are deferred to 8 5 ,  since fermion anticommutation rules and 
similar phase factors affect the precise form of the connection in different ways for 
different operators. However one general introductory step is now taken. 

The effect of time reversal on the matrix elements (and thus on the coefficients in 
a second quantised Hamiltonian) of a time-even (odd) operator is that of complex 
conjugation. From equation (20) (cf Stedman and Butler (1981) for a detailed account) 
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this may be equally described as the combination of operations: ( a )  a 2jm transforma- 
tion (or time reversal) of state labels and ( 6 )  the introduction of a sign 7 for a time-odd 
operator. If I? is the time-reversal conjugate to K ,  etc, 

H K L =  7 ( K R ) ( L C ) ( H I ? . i . ) * =  H * L K  (24) 

where 7 = +1 for time-even operators E, and -1 for time-odd operators 0; the last 
relation follows from Hermiticity. 

5. Application to one-particle Hamiltonians 

5.1. General 

Consider a general one-particle interaction Hamiltonian 

F=xLMfLMalaM =zLMgLMaia"M 

where gLM = ( M ) f L a .  Using equations (IS), (3), (21), (1): 

CF = - {ZL  fLL f E L M  (LC)(  M M )  f acaLaM)C. 

Hence if the trace term vanishes the operator F is C-even or C-odd as 

f L M  = W " 4 f r n  = f X L  (26) 

respectively; the last equation follows from hermiticity. (Removal of the trace term 
amounts to the extraction of any component of the number operator N = E K n K  from 
F. A similar calculation shows that for the trace term 

ci = ( No - i) c (27) 

where No is the number of states in the set {K}.) From equations (24) and (26), if the 
paired states K ,  are related by time reversal, the coefficients fLM are C-even as the 
interaction is time-even or odd and the coefficients are antisymmetric (and so imaginary) 
or symmetric (and so real) respectively; conversely for a C-odd operator: 

% K L  = - 7 7 g L K  Q K L  = 7 7 Q L K .  (28) 
Equation (28), which may be contrasted with equation (24), corresponds to theorem 
7-1 of Watanabe (1966) in the context of ligand field theory, with the important 
difference that, to obtain anticommutation with quasispin, we are forced to add complex 
conjugation to Watanabe's PH conjugation operator (as also to that of Keiter et a1 
(1969), these authors using essentially C'=  C Z )  and so put a constraint on our 
C-even/odd operators with non-trivial physical consequences. The above symmetry 
would have been guaranteed by hermiticity if combined with complex conjugation; 
but then the above analogy with Kramers or time-reversal symmetries would be lost. 

This raises the general question: is it worth adding complex conjugation Z to the 
PH conjugation operator C'? The price we pay is a restriction to a physically constrained 
form of interaction with symmetric (and real) or antisymmetric (and imaginary) matrix 
elements. The advantage we gain is that all earlier equations apply, and stronger 
selection rules may be proved. Quasispin operators at least are indeed C-odd and 
Hamiltonians constructed from quasispin operators have definite C-parity; the matrix 
elements of their eigenstates are subject to these stronger rules. This is known to 
include several Hamiltonians of considerable physical interest (see 4 9  5.3 and 6) and 
the constraint is physically interesting. 
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This problem of the plurality of PH conjugation operations and the consequent 
need for a trade-off between respective advantages and disadvantages is known in 
previous applications. We have already mentioned the application in ligand field 
theory by Watanabe (1966); several of the results of § 3 have parallels in Watanabe’s 
equations. We note the formalisms of Herrick (1981), Herrick and Liao (1981) and 
Koutecky et a1 (1985) where several C-operators are defined, along with quasispin 
operations, in the context of alternant symmetry in linear polyenes. 

One caution is warranted at this stage. PH conjugation in the above senses is not 
to be identified with the particle physicists’ particle-antiparticle conjugation operator; 
its action is not merely to reverse the charge of the constituent particles, for example. 
The primary reason why the ligand field for substitutional ions in solids is C-odd 
(Newman 1971) is not that the classical electrostatic potential is linear in charge but 
that it is time-even and real. Clearly some connection with charge reversal is implied 
by equation (27), but this link is secondary for our purposes. 

In some applications the paired states are defined more arbitrarily than by time 
reversal and equation (26) is more fundamental. 

5.2. Examples of one-particle operators with C-parity 

We give three examples. Consider first the Hamiltonian 

Ho = Zk EK ( aKaK - a R a e) .  

The prime denotes that the sum over K is over each pair. Physically, this would hold 
for a time-odd perturbation (e.g. Zeeman splitting) of states with differing spin projec- 
tion in an orbital, for nuclear or atomic shell theory; states with opposite projection 
would shift by opposite amounts (equation (17)). It could also correspond to paired 
states K, R in a metal with opposite energies EK = - E R  relative to the Fermi surface 
(Keiter et a1 1969). Since K and E are not now time-reversal conjugate, a definition 
of paired labels must be chosen to conform to equation (17). Note also that the number 
operator has been extracted. 

From equation (8) this Hamiltonian is a quasispin invariant. It is also PH conjuga- 
tion invariant (C-even) from the above theorem (the coefficients are clearly symmetric, 
since diagonal, and are ‘time’-odd). One could equally have argued the C-even 
character from its quasispin content (see the last part of 0 3). 

As another example, take the exchange interaction of Keiter et a1 (1969) for an 
electron in a metal interacting with an impurity spin (Kondo problem) K = ( k ~ ) :  

This Hamiltonian is C-even under the constraint, assumed explicitly by Keiter et a f  
(1969) (note C commutes with the spin operator S ( 0  3)) 

Jkl = J i i .  (31) 
It is not obvious that this symmetry is realistic, since this condition is not guaranteed 
by time-reversal considerations ( K  and R are not time-reversal conjugate; even if they 
were, a reality condition is also implied). 

Third, an electron-phonon interaction whose parameters have the symmetry of 
equation (31) will be C-odd. Krempasky and Schmid (1979) illustrate the potential 
importance of such a symmetry in thermopower calculations; this will be analysed 
more fully in a following paper. 
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Fourth, the ligand field (Newman 1971) is time-even and is real, and so C-odd. 
In the operator equivalent formalism, the Hermitian ligand field operators of the form 
of a function of J,  times (I+" + J ! ) ,  or (J+" - J M ) / i ,  have real coefficients A:.  

Fifth, the standard one-photon interaction A - p  may be expanded in terms of E l  
( A , - p ) ,  M1 ( m . L ) ,  where m is the magnetic polarisation and L the angular momentum 
operator, see Stedman 1985) and E2 multipole moments, etc. All terms are time-odd, 
because the vector potential A is time-odd. Successive multipoles are real and 
imaginary, because of the imaginary factor in the exponent of A = A,, exp(ik. r ) .  The 
El term is real, while E2 and M1 are imaginary. Hence the El interaction is C-even, 
while the M1 and E2 interactions are C-odd, etc. 

5.3. Analogues to selection rules from time reversal 

First we consider analogues to the constraints on diagonal matrix elements of an 
operator in PH conjugate states. From equation (23) these are equal/opposite as the 
operator is C-evenlodd. In a half-filled shell in LS coupling, each state is an eigenstate 
of the PH conjugation operator ( $  3 ) .  Hence C-odd operators, such as the spin-orbit 
interaction and the ligand field, have no matrix elements in a half-filled shell in LS 
coupling. This result with other more general results is proved by Judd (1967) in an 
elegant manner, except for the appeal to the vanishing of the (quasispin) 3jm symbol 

(: : 3 
when Q is odd. His proof notes that a C-odd operator may be expanded in terms of 
(C-odd) quasispin operators of rank Q, say, and that its matrix elements are propor- 
tional to this 3jm symbol. In more conventional applications, its vanishing implicitly 
uses time-reversal constraints, via the Derome-Sharp lemma (Stedman and Butler 
1981). The above proof makes this link directly and so avoids particular numerical 
properties of 3jm symbols. We note that the pioneering work of Racah on such 
cancellations in a half-filled shell assumed a reality/symmetry constraint for the 
Hamiltonian matrix elements and that a C-even operator could not be expanded using 
the tensor operator X applied by Judd (1967) in this context, and so evades the above 
theorem. This is paralleled by the way in which, for time-reversal reasons, spin operators 
must replace spherical harmonics for expansions of time-odd operators if certain 
diagonal matrix elements are not to cancel (Stedman and Butler (1981), for example; 
the reduced matrix element of a spherical harmonic is proportional to a similar 3jm 
symbol). 

More generally of course, equations (23) proscribe the relation between matrix 
elements in conjugate ions within a transition or lanthanide series. 

While first-order diagonal matrix elements may be forbidden, second-order ones 
may be allowed, subject to the kind of partial cancellation described in connection 
with equation (24). Just such partial cancellations have importantly affected two- 
photon spectral calculations for gadolinium (Judd and Pooler 1982). We might describe 
these cancellations, therefore, as quasi-van Vleck cancellations. 

We now consider the corresponding results for first matrix elements of the photon 
interaction. To a first approximation (ignoring odd-parity ligand field mixing) E l  
transitions are forbidden within a shell multiplet (say the ground multiplet S7,? of 
Gd") for parity reasons. However M1 and E2 are allowed by parity and may be 
expected to dominate. These multipoles are C-odd, and therefore can give rise only 
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to antisymmetric matrix elements ( M o b  = -Mho,  cf $ 4.1). The antisymmetric part of 
the orbital space of "+'L,,  [ L x  L ] - ,  contains only odd angular momenta. Hence a 
rank-2 interaction such as E2 cannot couple states within a multiplet of a half-filled 
shell in LS coupling. 

6. Application to two-particle operators 

A two-particle operator of the form 

(32) 

has the coefficient symmetries g K L & j ,  = g L K N M  = - g L K M N  = g * , N K L .  Under a similar 
analysis to that of $ 5.2,  it will be C-even/odd as a whole if 

+ +  G = x K L M N g K L M N a  K a L a M a N  

g K L M N  = * ( K ~ ) ( L L ) ( M ~ ) ( N ~ ) g R r , ,  (33) 

and if C K g K L K N  =o. 
If the two-particle operator acts between particles in different shells or configur- 

ations, say, one may derive conditions similar to those of 9 5.2 for the one-particle 
tensors into which G may be factorised (on a term-by-term basis) by applying PH 

conjugation operations to just one shell. In this manner we may reproduce the results 
of, for example, Racah (1942, 1943) who showed that in LS coupling, under PH 

conjugation, matrix elements changed by a phase ( - l )S fk f '  where S, k are the spin 
and spatial ranks. (Hence T-even operators are C-odd, and  vice versa; see also Parikh 
(1978) and  Arima (1983)) In particular, even rank multipole coupling operators were 
PH-conjugation-odd, and  vice versa. Racah concluded that electrostatic energies are 
identical within conjugate configurations, electrostatic couplings between a fixed 
configuration and  a second is altered in sign when the second is conjugated and 
diagonal matrix elements within a half-filled shell vanish if S+ k is even. For example, 
diagonal matrix elements of a spin-orbit coupling within a half-filled shell vanish. 
Arima (1983) shows that matrix elements of quadrupole operators which are diagonal 
in seniority vanish in a half-filled shell. Arima (1983) and Parikh (1978) discuss 
conservation of quasispin for the odd rank terms in a multipole expansion of the 
Coulomb interaction. This may be extended (Arima 1983) to the point interaction 
approximating one-pion exchange in the nucleus, but not the quadrupole or other even 
rank couplings. 

As another example, consider the BCS Hamiltonian in the form (Kittel (1963) and 
Doniach and  Sondheimer (1974) with some notational changes) 

The first (unperturbed) term, Ho, is linear in quasispin and so is C-odd if E K  = E R ;  
hence C-conjugate states have opposite unperturbed energies. (For example, a filled 
pair state and  an  empty pair state have opposite energies relative to an  origin, suitably 
defined-at the energy of a half-filled state.) The perturbation V is quadratic in 
quasispin and  is C-even; hence C-conjugate states have the same diagonal matrix 
elements. Hence all pair states can experience the same lowering (and in fact binding) 
effect on their energies under the interaction. C-parity arguments thus support the 
possibility of a superconducting transition. Incidentally, quasispin gives an  elegant 
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reformulation of the Bogoliubov-Valatin operators (Taylor 1970) 

Y K  = UKaK - uKai = UKAR 

where the quasispinor U,  = ( - u K ,  ( K ) u K  ); for example, their anticommutation rela- 
tions follow directly from equation ( 3 )  and C y K  = (K l? )8 :  C. The standard pairing 
interaction in nuclei is also of the above form. 

7. Conclusions 

If the Hamiltonian of interest is made of quasispin operators with real (or with 
imaginary) coefficients, selection rules analogous to those from time reversal symmetries 
(§ 4) may be derived. 

In  all such applications, quasi-Kramers symmetries give an alternative and elegant 
explanation and unification of the origin of a wide variety of selection rules. 
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